POZNANIKA POZNAN

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Diploma seminar [N2Bud1-KB>SD]

Course

Field of study Year/Semester

Civil Engineering 2/4

Area of study (specialization) Profile of study

Structural Engineering general academic

Level of study Course offered in

second-cycle Polish

Form of study Requirements part-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

10 0

Number of credit points

4,00

Coordinators Lecturers

Prerequisites

1. Knowledge: - has the knowledge of strength of materials, mechanics of buildings, metal structures, reinforced concrete structures, masonry structures and timber structures 2. Skills: - can obtain information from sources and prepare complete documentation of various objects 3. Social competences: - understands the need for lifelong education

Course objective

Developing the ability to extending the knowledge by reading scientific and technical journals. Developing the ability to deliver presentations.

Course-related learning outcomes

Knowledge:

- 1. know in detail the principles of analysing, constructing and dimensioning elements and connections in selected building structures [P7S_WG (I)]
- 2. have extended and detailed knowledge of material strength, modelling and constructing; have knowledge of theoretical principles of the finite element method as well as general rules of non-linear calculations of engineering structures [P7S WG (O/I)]
- 3. know in detail the rules of design of selected buildings [P7S WG (I)]
- 4. have detailed knowledge on business activity in construction industry and the ways of developing

different forms of individual entrepreneurship; understand the principles of enterprise financial economy [P7S WG (O/I)] [P7S WK (O)]

5. know the legal regulations in the field of industrial and intellectual property protection [P7S_WG (O)] [P7S_WK (O)]

Skills:

- 1. are able to correctly define a computational model and carry out an advanced linear analysis of complex building units, their elements and connections; are able to apply basic nonlinear computational techniques together with a critical evaluation of numerical analysis results [P7S_UW (I)]
- 2. can design elements and connections in complex building units, working both individually and in a team [P7S_UW (I)]
- 3. can perform a classical static and dynamic analysis and stability analysis of statically determinate and non-determinate bar structures (trusses, frames and strands) [P7S UW]
- 4. use advanced specialized tools in order to search for useful information, communication and in order to obtain software supporting the designer and organizer of building engineering works [P7S UW (O/I)]
- 5. can dimension complex construction details in selected building units [P7S_UW (I)] 6. are able to prepare a building unit design and technical documentation in the environment of selected CAD software [P7S_UW (I)]

Social competences:

- 1. are responsible for the safety of own work and team work [P7S KR (O)]
- 2. are ready to autonomously complete and broaden (extend) knowledge in the field of modern processes and technologies of building engineering [P7S_KR (O)]
- 3. can realise that it is necessary to improve professional and personal competence; are ready to critically evaluate the knowledge and received content [P7S KK (O)]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

- evaluation of student activity during the seminar classes
- evaluation of the delivered presentations and activity in discussions

Programme content

Acquainting students with the formal rules of taking the diploma examination and rules of thesis preparation

Students study literature and search for a topic from scientific and technical literature. They prepare and deliver presentations about their theses and presentations about scientific and technical topics. Discussion about student presentations

Course topics

none

Teaching methods

Students prepare and deliver presentations about their theses and presentations about scientific and technical topics. The lecturer and students ask questions during presentations. Discussion after presentations

Bibliography

Basic

1. Books and technical and scientific journals 2. Polish and European standards Additional

Scientific and technical literature

Breakdown of average student's workload

	Hours	ECTS
Total workload	110	4,00
Classes requiring direct contact with the teacher	18	0,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	92	3,50